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Consideration is given to a method of calculation of unsteady heat transfer processes using isothermal 

surfaces that are stationary in space, including time and, in the general case, three space coordinates. 

Conditions are obtained that must  be satisfied by the equations of such surfaces. 

In designing metallurgical units and developing a technology it is necessary to know the temperature 

distribution in equipment and lining components. Design methods and results of solutions are reported in [1-4 ]. 

For steady processes fixed isothermal surfaces exist, and if they are known, a solution can be obtained. In [5 ] 

conditions are determined that functions that are equations of a family of lines (or surfaces) must satisfy so that 

these lines (surfaces) can actually be isotherms. 

In unsteady processes no fixed surfaces exist, as a rule, in the physical space. However, such stationary 

surfaces exist in a space-time continuum, i.e., in the space (four-dimensional in the general case) obtained by 

adding time to the space coordinates. 

The equation of unsteady heat transfer in the curvilinear orthogonal coordinates a,/5, y is of the form [3, 

41 

1-[18283 ( n 1 + O-O~ ~ n 2 + -~  ~" 8"--33 = ct9 -0~ " ( l ) 

For the two-dimensional problems Ot/O~ = 0, H 3 = 1, while for problems with axial symmetry (with the 

axis of symmetry y) after introducing the coordinates a(x ,  y), /5(x,  y) in a meridian plane [5] we obtain 

0t 
= 0 ,  n 3 = x ( a , / 5 ) .  

If a function of coordinates and time u(a, 15, y, 3) exists such that the temperature is only a function of u, 

i.e., t(u), then the surfaces u = const are isothermal surfaces in the four-dimensional space Ca, t5, y, 3). Although 

the process is unsteady, these surfaces are stationary (in the space-time continuum). 

To solve problems by the semi-inverse method, it is desirable to have a criterion for checking any 

differentiable functions u(a,/5,  y, 3) as to whether the corresponding surfaces can be isotherms (for steady-state 

problems this is condition (4) in [5]). With the assumption that t is a function of u, instead of (1) we obtain the 

equation 

• dt d2t + ~ , -  = 0 ,  (2) 
du 2 du 

= 
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Fig. 1. Isotherms and initial temperature distribution of a line segment cooled 
with ze ro  t e m p e r a t u r e  of  i t s  ends .  l-, sex:; x, m; t, °C.  

/ / + - cpHIH2H 3 × 

× [ [ ] t H 2 H 3 ( 0 u )  - ~  + ]tHIH3 (Ou) 0-~ + ~HIH2 ( -~)  2] - I H - - - - - ~  (3) 

If ~o can be represented as a function of u, then Eq. (2) has a solution (in a particular case, ~o can be constant).  If 

~o is not a function of u, then the assumption of isothermality of the surfaces u = const is incorrect. 

As an example, we consider at first the case where the temperature depends only on one space coordinate 

when in cooling a segment of length 2l with the temperature equal to zero at a = x -- _ l ,  Ot/Ofl = Ot/Oy = 0, H l 

= H2 = Ha -- 1, the space-time continuum is two-dimensional  and can be depicted graphically. Making the 

assumption that the isotherms can be described by the equation 

I U ----- #tIT + rt In COS 

w h e r e  m,  n a r e  c o n s t a n t s ,  we d e t e r m i n e  the  fo l lowing func t ion  f rom Eq. (3) wi th  ;t -- cons t :  

(4) 

2 

v -2 rt + COS 

F o r  m = - ( 2 n / c p ) ( ~ r / 2 / )  2 the  func t ion  ~o = cons t  = - l / n ,  a n d  Eq. (2) has  t he  so lu t i on  

t(u)=Cl+C2exp (u), (5) 
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Fig. 2. Isotherms in the form of parabolas: a) with a common point of all 

theparabolas at the origin of coordinates (the Stefan problem) ; b) with a shift 

of the parabolas relative to each other along the r-axis.  

2 

U = r t  - -  r -I- I n  c o s  , 

where CI, C2 are integration constants determined by the boundary  conditions. 

Figure 1 shows isotherms in the coordinates x, r constructed for C1 = 0, C2 -- tin = 1000°C for a segment  

l = 0.5 m. Here tin is the initial temperature of the middle of the segment (x -- 0, r = 0), and the curve t(x) at ~: -- 

0 is represented in Fig. 1. The calculations are made for steel with a -- 25 W / ( m . d e g ) ,  c = 710 J / ( k g . d e g ) ,  p = 

7800 k g / m  3, 2l -- 1 m, n = 1, u -- - 5 . 1 6 -  1 0 - s t  + lnlcos(3.14x) I. 

Figure 1 shows three isotherms: for u -- 0, t ~- tin = 1000°C; along the second isotherm u = - 0 . 7 7 ,  t = 463°C; 

for u -- - 1 . 5 4 ,  t = 213°C. These curves are actually isotherms (lines of constant  temperature) ,  but in a sys tem of 

space-time coordinates. For  the ends of the segment the isotherms are  straight lines parallel to the r axis, x - ___0.5 

m (here t -~ 0). At the initial moment the point A of the segment had the temperature tl, and  at the moment  of 

time rl  it passed (in moving along a straight line parallel to the • axis) to the isotherm u --- - 1 . 5 4 ,  and  the 

temperature at it was equal to the temperature at the point B at the initial moment ,  i.e., to t2. 

It is easy to verify that in the two-dimensional (x, r) problem isotherms can be: straight lines 

u = ~ - x ,  (6) 

parabolas passing through the point x -- • -- 0 

2 
x (7)  u = ~ "  

and parabolas obtained by a shift relative to each other  along the ~ axis 

2 
u = ~ + x , (8) 

where k is a constant. 

Using (6), we obtain 99 = -cpk/2, and from formula (7) it follows that 

/cr + qok _ ! + qok (9) 

~o= 2x 2 4A - 2u 42 

This yields the well-known Stefan solution for crystallization expressed in terms of the Laplace function [1-3, 6 ]. 

After substituting (8) into (3) we arrive at 
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~o = 

and  solution (2) exists  only for k -- 22/cp, i.e., 

2 22 
u = x  + - - r ,  ~o=0, 

cp 

I (U) = C 1 -k C 2 u .  

(10) 

Figure 2 shows isotherms in the form of parabolas ,  and  in conformity  with (7) Fig. 2a depicts  lines t = 

const passing through the origin of the coordinates x = r = 0, while Fig. 2b shows parabolas  cor responding  to (8) 

shifted relative to each o ther  along the r axis. The  scheme in Fig. 2a corresponds  to the Stefan p rob lem [6 ] of 

crystall ization of a liquid phase  (without its superheat ing)  at a constant  t empera tu re  to s tar t ing  f rom the p lane  x = 

0. T h e  line to = const,  u = uo is the boundary  of the phases,  with the liquid phase  being to the f ight  of it (Fig. 2a) 

and  the solid s ta te  to the left of it. For instance,  in the cross section A solidification s tar ted  at  the m o m e n t  l" 1 when 

the segment  OA was equal to the thickness of the solid phase  6 = @ .  At the moment  r2 the  t e m p e r a t u r e  of the 

point A was equal to r2, while the thickness of the solid phase  cor responded to the segment  OB. T h e  solution of 

the Stefan problem is well s tudied and  is consistent  with exper imenta l  data  for a constant  t empera tu re  of the  surface 

of the ha rdened  body [6 ]. According to Eqs. (6), (7), the isotherms in the coordinates x, $ can be both  parabolas  

and  straight  lines. Both these solutions can be used to describe the solidification process with a constant  t empe ra tu r e  

at the movable phase  boundary .  Let us compare  these two solutions. In the known Stefan solution u = x2/kr  the 

condition of t empera tu re  cons tancy is fulfilled on a surface whose motion is de te rmined  by the  condit ion x = const 

v~- (the so-called "square-root  law," see [6 ]). For  the s traight  isotherms u = kr - x the condit ion of t empe ra tu r e  

constancy is fulfilled for x = kr - const, i.e., the tempera ture  at the movable boundary  is constant  but  for  a law of 

motion of the liquid-solid interface other  than that  in the Stefan problem. If  at  the initial moment  • = 0, x = 0, then 

the thickness of the ha rdened  layer  is equal to t~ = v ~  in the Stefan solution and  ~ =/cr in the new solution. Here ,  

for the new solution 7' = const -- -cpk/ / l ,  and the exact solution of heat  conduction equation (2) is of the  form 

t (u) = C, + C2 exp ( - ~  u) , (11) 

while in the Stefan problem the analogous solution is de te rmined  by the Laplace function ("the er ror  function") 

[6 ]. 
At the phase  bounda ry  the heat  balance condition must  also be fulfilled, which for  cons tancy  of the 

t empera ture  of the liquid phase,  i.e., in the absence of superheat ing,  has  the form 

ot d~ 
]t ~-~x = P L dr 

for u = u0 -- const,  where  t = to -- const. These  boundary  conditions de te rmine  the constants  Cl ,  C2 in formula  (11), 

and  the solution obta ined  is 

T h e  well-studied Stefan solution [6 ] and  the solution corresponding to formula (11) sat isfy the s ame  bo u n d a ry  

conditions at the movable phase  boundary ,  but the boundary  conditions on the second surface,  for instance,  on the 

fixed surface x -- const -- 0, a re  different for them. In the Stefan solution t(0) -- const at x -- u -- 0 and  solidification 

occurs in this case at a constant  t empera ture  of the surface x -- 0. But for the solution (11), at  x -- 0, u = k~ 

[ex  / -1], 
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Fig. 3. Isotherms and the change in the surface temperature  in solidification 

with a constant  velocity of the phase boundary.  

and the heat  flux on this surface is 

q0 q(O)=pkLexp ~ , k - i . p .  

The  solution (11) can be used only in the case where the boundary  conditions are  close to those de te rmined  by 

formula (12) or  can be matched with it owing to a proper choice of the constant k. 

Depending on the cooling conditions of the surface of the hardening body,  an acceptable solution can be 

chosen. If the surface tempera ture  changes slightly and can be taken to be constant,  the Stefan solution is definitely 

preferable.  However,  for intense cooling of the surface and a rapid decrease in its temperature  (which is often the 

case with continuous metal casting) it is preferable to use formulas (1 I) ,  (12). 

Th e  constant  k is determined by the boundary  conditions; for instance,  if a heat  flux qo is specified at x 

= z = 0, then 

k =  q o  q ( O ) - - k  o e x p  cq° 
, ~ p , ~ L 2  T . pL 

These  formulas were used in a calculation of temperature  regimes of continuous casting of thin 60 x 1200 mm 

slabs at high rates up to 3.5 m/ra in .  In this case cooling proceeded at a high rate both in the short  crystal l izer  and  

under  the latter ,  where sprayers  for cooling the slab surface were installed. Calculation~ were made  for carbon steel 

w i thp  -- 7800 k g /m  3, c = 710 J / ( k g . d e g ) ,  ,~ = 29 W / ( m . d e g ) ,  t = 1500°C, L = 2.68.105 J /kg ,  q0 = 2.5.106 W / m  2, 

k -- 2.5. 106/(7800-2.68.  l0  s) = 1.2.10 -3  m/sec .  The  solidification rate was equal to 1.2 mm/sec ,  which agrees with 

experimental  data  for the initial stage of crystallization of steels. The  change in the surface tempera ture  (x = 0) is 

shown in Fig. 3, where isotherms (with indices equal to the temperatures)  are also given. The  isotherm to = 1500°C 

restricts the solid phase (unlike the parabola in the case of the Stefan solution). This  solution for the case of a 

constant rate of crystallization requires rapid cooling of the surface with boundary  conditions corresponding to (12). 

When the Stefan solution with a constant  surface temperature  is used, the motion of the phase bounda ry  (and the 

thickness of the sohd layer) is described by the "square-root law," and  the velocity of this boundary  decreases  

monotonically with increasing thickness of the hardened layer.  The  obtained solution (11) character izes motion of 

the phase boundary  with a constant  velocity, and in order  to ensure such a crystallization mode, it is necessary  to 

provide h igher- ra te  cooling of the boundary  surface of the solid in conformity with formula (12). T h e  isotherms 

demonstra te  the temperature  distribution in the plane x, 3. 

For  polar coordinates in the two-dimensional problem x = a cos fl, y = a sin fl, H1 = 1, H2 = a ,  Ha = 1, and  

the linear function (6) cannot  represent  an isotherm. However, the quanti ty u = n(z- + ( c p / 4 J ) a  2) similar to (8) 

gives ~ = 0 and  a solution in the form of (10). The  variable (7) also provides the dependence  ~o(u), and  consequently, 
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the parabolic dependences T(a) determine isotherms in polar coordinates as well. These results can be extended 
to the case of an asymmetric distribution of temperatures. If isotherms are adopted in the form 

u = • + ~ + / ( a ) ,  

where n is a constant, f(a) is a function of the variable a,  then ~ = 0 for f(a)  = In a + cpa2/42. 
Let us consider curvilinear orthogonal coordinates that are supplemented with time as an additional 

coordinate. To calculate parabolic coordinates in the two-dimensional problem [4 ], we take 

x = a f t ,  y = 0 . 5 0 5 2 - a 2 ) ,  Hi = H 2 = ~ - 7 - - ~ 2 - ,  H a =  1. 

It is easy to check that ~o = 0 for the variables 

where k is a constant that depends on the boundary conditions; J0 is a Bessel function of zeroth order. 

Both formulas of (13) lead to a solution in the form of (I0). If the boundary conditions correspond to the 
experimental data with sufficient accuracy here, then the solution is acceptable. These results were used for 
temperature calculation of inserts in the form of parabolic cylinders. Such inserts on a continuous casting machine 
of the "Azovstal'" metallurgical works were used in crystallizers for molding depressions on slab surfaces. After 
leaving the crystallizer, each of wide faces of the slab had two depressions of approximately parabolic form. Then 
the slab was cut along these depressions into individual billets by oxygen cutting for the slab rolling mills. For the 
axisymmetric problem in parabolic coordinates it is necessary to take Ha = aft, and then the following solutions can 

be obtained: 

u = k r + n l n a l n f l +  c, o k ( a 4 + f l 4 )  
162 

U = J1/2 v-2e-s- r 

= 2 exp ( - a 2  +/j-2kz) ~ f ( l  d ( c ~ )  ) sin [ d (  cpk)4~ (a2 + f12)] ' 

where Jr~2 is a Bessel function of the first kind of order 0.5, and in both cases ~o -- 0 and formula (10) determines 

the solution. 
Equations (13) with the condition u --- const determine isothermal surfaces in the coordinates a,  r ,  r. 

If the coordinates in the plane are logarithmic spirals, then HI = V-flF'Za-, H2 = vrd-7~, H3 = 1 (see [4 ]), 
and solution (10) for ~o = 0 is realized for isothermal surfaces: 

Not only in Cartesian but also in a number of curvilinear coordinate systems there are isotherms that are 
determined by the product of an exponential function of the time and some function of the coordinates. 

In the bipolar coordinates 

2 1 + cotan 2 x + ( y  cotana)  2 

2 ( x - c o t h f l )  2 + y  = c o t h 2 3 -  1, 
(14) 
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HI -- H2 = 1 / (cosh fl - cos a) (see [4, 5 l) use can also be made of formula (10) by applying the following isotherms 
for the two-dimensional problem: 

u = k-r + cpk sh2p 
~ o = 0  

7A (cosh 3 - cos a )  2 '  

For the axisymmetric problem (cooling of a body in the form of a torus with mean radius coth fl and radius of the 

generating curcle x/coth2fl - 1 ) ~o -- 0 and solution (10) occurs for the isotherms 

u = k r +  cpk 

2,l 

• 2 
s i n  ct 

(cosh/~ - cos a )  2" 

In problems solved in a space of i measurements (i -- 1, 2, 3) unsteady processes can fail to have fixed 

isotherms. But such isothermal surfaces exist in the space of (i + l) measurements in which time is the addit ional  

coordinate. In solving problems by the semi-inverse method the choice of suitable isothermal surfaces with the aid 

of the function 7, allows the problem to be reduced in a number  of cases to the solition of an ordinary differential 

equation of the second order. 

N O T A T I O N  

c, heat capacity of the material; f ,  function of the variable a;  HI ,  H2, Ha, coefficients of the first square 

form (Lam~); k, constant characterizing the cooling rate; L, latent heat  of solidification; l, half-length of the 

segment, the temperature of whose ends is equal to zero; m, n, constants characterizing the isothermal surface, see 

(4); q, heat flux; q(0), heat flux on the surface of the body ; qo, heat flux on the surface of the body at the moment  

of the beginnin of cooling (r -- 0) ; t, temperature; tin, initial temperature at r -- 0; to, solidification temperature;  t l ,  

t2, temperatures at the moments of time rl and r2; u, quantity determining the isothermal surface in the space-time 

continuum; uo, quantity u at the solidification temperature to; x, y, z, Cartesian coordinates; a ,  fl, y, curvilinear 

or thogonal  coordinates;  6, thickness of the material  ha rdened  unde r  crysta l l izat ion condit ions;  ,~, the rmal  

conductivity; p,  density of the material; ~a, function determined by (3); r, time. 
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