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APPLICATION OF ISOTHERMAL SURFACES FOR
CALCULATION OF UNSTEADY HEAT TRANSFER
PROCESSES

M. Ya. Brovman UDC 536.24

Consideration is given to a method of calculation of unsteady heat transfer processes using isothermal
surfaces that are stationary in space, including time and, in the general case, three space coordinates.
Conditions are obtained that must be satisfied by the equations of such surfaces.

In designing metallurgical units and developing a technology it is necessary to know the temperature
distribution in equipment and lining components. Design methods and results of solutions are reported in [1-4].
For steady processes fixed isothermal surfaces exist, and if they are known, a solution can be obtained. In [5]
conditions are determined that functions that are equations of a family of lines (or surfaces) must satisfy so that
these lines (surfaces) can actually be isotherms.

In unsteady processes no fixed surfaces exist, as a rule, in the physical space. However, such stationary
surfaces exist in a space-time continuum, i.e., in the space (four-dimensional in the general case) obtained by

adding time 1o the space coordinates.
The equation of unsteady heat transfer in the curvilinear orthogonal coordinates «, 8, y is of the form (3,

1 0 (AH,H; ot 0 (AHH; ot 0 (AHH, ot ot o)
H\HyH3 |da | H da M H, 3 T Hy o|| =~ %o
For the two-dimensional problems d¢/dy = 0, H3 = 1, while for problems with axial symmetry (with the
axis of symmetry y) after introducing the coordinates a(x, ¥), 8(x, y) in a meridian plane [5] we obtain

4]

ot

ay=0’ Hy;=x(a,p).

If a function of coordinates and time u(a, 8, y, t) exists such that the temperature is only a function of u,
i.e., 1{u), then the surfaces u = const are isothermal surfaces in the four-dimensional space («, 8, ¥, ©). Although
the process is unsteady, these surfaces are stationary (in the space-time continuum).

To solve problems by the semi-inverse method, it is desirable to have a criterion for checking any
differentiable functions u(a, B, v, 1) as to whether the corresponding surfaces can be isotherms (for steady-state
problems this is condition (4) in [5]). With the assumption that ¢ is a function of u, instead of (1) we obtain the
equation

dt+(pdt (2)
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Fig. 1. Isotherms and initial temperature distribution of a line segment cooled
with zero temperature of its ends. 7, sec; x, m; t, °C.
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If ¢ can be represented as a function of &, then Eq. (2) has a solution (in a particular case, ¢ can be constant). If
@ is not a function of «, then the assumption of isothermality of the surfaces u = const is incorrect.

As an example, we consider at first the case where the temperature depends only on one space coordinate
when in cooling a segment of length 2/ with the temperature equal to zero ata =x= 1, 9t/ = dt/dy =0, H,
= Hy = H3 = 1, the space-time continuum is two-dimensional and can be depicted graphically. Making the
assumption that the isotherms can be described by the equation

u=mr+nln

X
COs (2—ll ‘ s (4)
where m, n are constants, we determine the following function from Eq. (3) with 4 = const:
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For m = —(An/cp) (x/ 202 the function ¢ = const = —1/n, and Eq. (2) has the solution

t{(u) =C; + Cexp (%) , )
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Fig. 2. Isotherms in the form of parabolas: a) with a common point of all
theparabolas at the origin of coordinates (the Stefan problem); b) with a shift
of the parabolas relative to each other along the r-axis.
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where Cy, C, are integration constants determined by the boundary conditions.

Figure 1 shows isotherms in the coordinates x, 7 constructed for C; = 0, Cp = £ = 1000°C for a segment
{=0.5 m. Here ¢, is the initial temperature of the middle of the segment (x =0, v = 0), and the curve f(x) att =
0 is represented in Fig. 1. The calculations are made for steel with A = 25 W/ (m-deg), ¢ = 710 J/(kg-deg), p =
7800 kg/m>, 2= 1m, n=1, u=—5.16-10"5 + Inlcos(3.14x) I.

Figure 1 shows three isotherms: for u =0, ¢ = t;; = 1000°C; along the second isotherm u = —0.77, t = 463°C;
for u = —1.54, t = 213°C. These curves are actually isotherms (lines of constant temperature), but in a system of
space-time coordinates. For the ends of the segment the isotherms are straight lines parallel to the 7 axis, x = 0.5
m (here ¢ = Q). At the initial moment the point A of the segment had the temperature ¢;, and at the moment of
time 1) it passed (in moving along a straight line parallel to the 7 axis) to the isotherm u = —1.54, and the
temperature at it was equal to the temperature at the point B at the initial moment, i.e., to ;.

It is easy to verify that in the two-dimensional (x, ) problem isotherms can be: straight lines

u=kr—-x, )]

parabolas passing through the point x =7 =0

7
u=7 M

and parabolas obtained by a shift relative to each other along the T axis

u=kr+x2, )]

where £ is a constant.
Using (6), we obtain ¢ = —c¢pk/A, and from formula (7) it follows that

(,,=£2+£0_k=i+ﬂ_ 9
2x 4 2u 4

This yields the well-known Stefan solution for crystallization expressed in terms of the Laplace function [1-3, 61].
After substituting (8) into (3) we arrive at
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and solution (2) exists only for &k = 21/¢p, i.e.,

=x2+%t, =0,
(10)
[(u)=Cy + Cqu.

Figure 2 shows isotherms in the form of parabolas, and in conformity with (7) Fig. 2a depicts lines ¢ =
const passing through the origin of the coordinates x = 7 = 0, while Fig. 2b shows parabolas corresponding to (8)
shifted relative to each other along the t axis. The scheme in Fig. 2a corresponds to the Stefan problem (6] of
crystallization of a liquid phase (without its superheating) at a constant temperature fy starting from the plane x =
0. The line #) = const, u = ug is the boundary of the phases, with the liquid phase being to the right of it (Fig. 2a)
and the solid state to the left of it. For instance, in the cross section A solidification started at the moment 7, when
the segment OA was equal to the thickness of the solid phase & = Vugkr;. At the moment 7, the temperature of the
point A was equal to 72, while the thickness of the solid phase corresponded to the segment OB. The solution of
the Stefan problem is well studied and is consistent with experimental data for a constant temperature of the surface
of the hardened body (6 ]. According to Egs. (6), (7}, the isotherms in the coordinates x, T can be both parabolas
and straight lines. Both these solutions can be used to describe the solidification process with a constant temperature
at the movable phase boundary. Let us compare these two solutions. In the known Stefan solution u = x*/kt the
condition of temperature constancy is fulfilled on a surface whose motion is determined by the condition x = const
Vvt (the so-called "square-root law,” see [6]). For the straight isotherms u = k&t — x the condition of temperature
constancy is fulfilled for x = kt — const, i.e., the temperature at the movable boundary is constant but for a law of
motion of the liquid-solid interface other than that in the Stefan problem. If at the initial moment r = 0, x =0, then
the thickness of the hardened layer is equal to = V&7 in the Stefan solution and d = &t in the new solution. Here,
for the new solution ¢ = const = —c¢pk/A, and the exact solution of heat conduction equation (2) is of the form

t(u)=C;+ Cyexp (—cﬁﬁu) , (11)

while in the Stefan problem the analogous solution is determined by the Laplace function ("the error function”)

(61
At the phase boundary the heat balance condition must also be fulfilled, which for constancy of the

temperature of the liquid phase, i.e., in the absence of superheating, has the form
vl
y a—x' = pL E

for u = ug = const, where ¢ = fg = const. These boundary conditions determine the constants C;, C in formula (11),
and the solution obtained is

) =1tg- = [exp (ﬁﬁﬁu) —1].

The well-studied Stefan solution [6] and the solution corresponding to formula (11) satisfy the same boundary
conditions at the movable phase boundary, but the boundary conditions on the second surface, for instance, on the
fixed surface x = const = 0, are different for them. In the Stefan solution £(0) = const at x = u = 0 and solidification
occurs in this case at a constant temperature of the surface x = 0. But for the solution (11), at x =0, u = kv

2
t0) =1 -——ff I:exp [—C%k—r] - 1] , (12)
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Fig. 3. Isotherms and the change in the surface temperature in solidification
with a constant velocity of the phase boundary.

and the heat flux on this surface is

cpk2 q
q (0) = pkL exp [TT] , k= I

The solution (11) can be used only in the case where the boundary conditions are close to those determined by
formula (12) or can be matched with it owing to a proper choice of the constant k.

Depending on the cooling conditions of the surface of the hardening body, an acceptable solution can be
chosen. If the surface temperature changes slightly and can be taken to be constant, the Stefan solution is definitely
preferable. However, for intense cooling of the surface and a rapid decrease in its temperature (which is often the
case with continuous metal casting) it is preferable to use formulas (11), (12).

The constant k is determined by the boundary conditions; for instance, if a heat flux g¢g is specified at x
=1 =0, then

2
k=£0—, g (0) = kg exp cqozr
pL PAL

These formulas were used in a calculation of temperature regimes of continuous casting of thin 60 x 1200 mm
slabs at high rates up to 3.5 m/min. In this case cooling proceeded at a high rate both in the short crystallizer and
under the latter, where sprayers for cooling the slab surface were installed. Calculations were made for carbon steel
with p = 7800 kg/m>, ¢ = 710 J/ (kg-deg), 1 = 29 W/ (m-deg), ¢ = 1500°C, L = 2.68-10° J/kg, go = 2.5-10° W/m?,
k=12.5-10%/(7800-2.68-10°) = 1.2-103 m/sec. The solidification rate was equal to 1.2 mm/sec, which agrees with
experimental data for the initial stage of crystallization of steels. The change in the surface temperature (x = 0) is
shown in Fig. 3, where isotherms (with indices equal to the temperatures) are also given. The isotherm #y = 1500°C
restricts the solid phase (unlike the parabola in the case of the Stefan solution). This solution for the case of a
constant rate of crystallization requires rapid cooling of the surface with boundary conditions corresponding to (12).
When the Stefan solution with a constant surface temperature is used, the motion of the phase boundary (and the
thickness of the solid layer) is described by the "square-root law," and the velocity of this boundary decreases
monotonically with increasing thickness of the hardened layer. The obtained solution (11) characterizes motion of
the phase boundary with a constant velocity, and in order to ensure such a crystallization mode, it is necessary to
provide higher-rate cooling of the boundary surface of the solid in conformity with formula (12). The isotherms
demonstrate the temperature distribution in the plane x, 7.

For polar coordinates in the two-dimensional problem x=a cos 8, y=asin 8, Hy =1, Hy=a, H3=1, and
the linear function (6) cannot represent an isotherm. However, the quantity u = n(r + (¢o/ 42)a®) similar to (8)
gives ¢ =0 and a solution in the form of (10). The variable (7) also provides the dependence ¢ (1), and consequently,
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the parabolic dependences 7(a) determine isotherms in polar coordinates as well. These results can be extended
to the case of an asymmetric distribution of temperatures. If isotherms are adopted in the form

u=t+nf+f(a),

where n is a constant, f(a) is a function of the variable «, then ¢ =0 for f(a) =In a + cpa2/41.
Let us consider curvilinear orthogonal coordinates that are supplemented with time as an additional
coordinate. To calculate parabolic coordinates in the two-dimensional problem [4], we take

It is easy to check that ¢ = O for the variables

u=a+ﬁ+k‘r+—‘l-:%k(a4+ﬂ4), u = exp (— kr) J, [\/(—%") (a2+ﬂ2)], (13)

where k is a constant that depends on the boundary conditions; Jg is a Bessel function of zeroth order.

Both formulas of (13) lead to a solution in the form of (10). If the boundary conditions correspond to the
experimental data with sufficient accuracy here, then the solution is acceptable. These results were used for
temperature calculation of inserts in the form of parabolic cylinders. Such inserts on a continuous casting machine
of the "Azovstal’" metallurgical works were used in crystallizers for molding depressions on slab surfaces. After
leaving the crystallizer, each of wide faces of the slab had two depressions of approxifnately parabolic form. Then
the slab was cut along these depressions into individual billets by oxygen cutting for the slab rolling mills. For the
axisymmetric problem in parabolic coordinates it is necessary to take H3 = 3, and then the following solutions can
be obtained:

u=kt+nlnalnp + (a +/3)

_exp(= kt K\ 2
x,—z——p ﬂ; Jis2 [\/(%) (a +l32)] =

_ﬂ__l\/[ \/[ ]] \/[ff] @+ ).

where J/, is a Bessel function of the first kind of order 0.5, and in both cases ¢ = 0 and formula (10) determines

the solution.
Equations (13) with the condition u = const determine isothermal surfaces in the coordinates «, 3, 7.

If the coordinates in the plane are logarithmic spirals, then #y = VB/2a, H, = Va/28, H3 =1 (see [4]),
and solution (10) for ¢ = 0 is realized for isothermal surfaces:

u—f’—a,3+kr, u=exp (- kr) Jg (\/(Eﬁﬁaﬂ) )

Not only in Cartesian but also in a number of curvilinear coordinate systems there are isotherms that are
determined by the product of an exponential function of the time and some function of the coordinates.
In the bipolar coordinates

cok

2 2
x +(y—cotana) =1+ cotanza ,

(x = coth B)2 + y* = coth® B — 1, (19
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Hy=Hy=1/(cosh B — cos a) (see [4, 5] use can also be made of formula (10) by applying the following isotherms
for the two-dimensional problem:

2
u=kT+‘CB‘I‘(‘ Shﬂ 2,<p=0.
21 (cosh B — cos )

For the axisymmetric problem (cooling of a body in the form of a torus with mean radius coth 8 and radius of the
generating curcle Vcoth? 8 — 1) ¢ = 0 and solution (10) occurs for the isotherms

pk sin’a
u=kr+ 2
21 (cosh 8 — cos @)

In problems solved in a space of { measurements (i = 1, 2, 3) unsteady processes can fail to have fixed
isotherms. But such isothermal surfaces exist in the space of (i + 1) measurements in which time is the additional
coordinate. In solving problems by the semi-inverse method the choice of suitable isothermal surfaces with the aid
of the function ¢ allows the problem to be reduced in a number of cases to the solition of an ordinary differential
equation of the second order.

NOTATION

¢, heat capacity of the material; f, function of the variable a; H,, H,, H3, coefficients of the first square
form (Lame); k, constant characterizing the cooling rate; L, latent heat of solidification; [/, half-length of the
segment, the temperature of whose ends is equal to zero; m, n, constants characterizing the isothermal surface, see
(4); g, heat flux; g(0), heat flux on the surface of the body ; gg, heat flux on the surface of the body at the moment
of the beginnin of cooling (r = 0); ¢, temperature; t,, initial temperature at v = 0; fy, solidification temperature; ¢,
1, temperatures at the moments of time r{ and 72; &, quantity determining the isothermal surface in the space-time
continuum; ug, quantity u at the solidification temperature fy; x, y, z, Cartesian coordinates; «, 8, y, curvilinear
orthogonal coordinates; 8, thickness of the material hardened under crystallization conditions; 4, thermal
conductivity; p, density of the material; ¢, function determined by (3); 7, time.
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